THE EFFECTIVENESS OF DIRECT APPLICATION OF THEORY ON STUDENTS' PROGRESS AND UNDERSTANDING

THUAS Delft, The Netherlands P.J. van Duijsen(presenter)D.C. Zuidervliet, C.F.M. Dirksen

www.dc-lab.org

June 30th 2022

www.dc-lab.org

A students Progress and Understanding

Introduction

- Ourse contents
- Original Lecture and Lab Outline
- Example of the course contents
- Ombining Lecture and Laboratory
- Measuring students progress
- Conclusions

Effectiveness of direct application of theory on students practical simulation and measurement skills

• Lecture: Theory (How does it work?)

LEARN₂₂

• Laboratory: Practice (See how it works!)

www.dc-lab.org

Course outline

- Introduction, smps versus linear power supplies, switching cell
- Buck and Boost converter
- Semiconductor
- Buck-Boost and Flyback
- Isolated converters like Forward and Pushpull and Full-bridge
- Magnetic components
- Control and PWM

Learn theory using online tools

Online simulations using CASPOC Simulations Online

Original sequence of topics

Lecture	Lab Topic	Lab-Assignment	
Intro, switching Cell	I.	Online design tool: Basic Waveforms 1) Choice of parameters (Uin, Uout, Iout, Fs, Cout) 2) Influence of the inductor L on the operation and (Uout and IL)	
Buck and Boost Converter	Ш	Online Simulation: Open loop, constant dutycycle 1) Start-up overshoot 2) Variation of the load resistance	
Semiconductor	Ш	Online Simulation: Mosfet Switching Waveforms 1) Influence of Rgate and Cgs in the gating circuit 2) Influence of Cgd 'miller' capacitance on the gating circuit 3) Switching loss due to Cds	
Buck-Boost & Flyback	IV	Online design tool: Power Inductor Design 1) Selection of minimum core diameter and material 2) Calulation of the windings 3) Calculation of the losses (Rdc/Rac winding loss and core loss BF)	
Isolated Converters	V	PCB Assembly 1) Placing all components except the the control IC. 2) Measurement of all voltage / current waveforms for constant dutycyle operation	
Magnetic components	VI	Ofline Simulation: Closed Loop, Control IC 1) Simulating the behavior of the closed loop control based on the control IC, Gatedriver, Mosfet and the feedback loop components.	
Control	VII	Measurement: Closed loop waveforms 1) Finalize the PCB with the control IC, measure all v, i and compare with simulation results. Examine the losses in the Mosfet, L and Cout using an infrared thermal camera	
	Lecture Intro, switching Buck and Boost Converter Semiconductor Buck-Boost & Flyback Converters Magnetic components	Lecture Propie Intro. switching 1 Buck and Boost 11 Semiconductor 11 Buck-Boost & PFlyback 1V Converters 2V Magnetic components V1 Control VII	

Original sequence of topics for lecture and lab assignments.

Typical study object

ILEARN.

www.dc-lab.org

Typical simulation

Simulation in Caspoc of a boost converter with parasitic components and current mode control ic.

Typical measurement

Boost Thermal image

ILEARN.

www.dc-lab.org

Week	Lecture	Lab Topic	Lab-Assignment
1	Intro, switching Cell	I	Online design tool:Basic Wave forms
2	Buck and Boost Converter	II	Online Simulation: Open loop, constant dutycycle
3	Buck-Boost & Flyback	V	PCB Assembly
4	Magnetic components	V IV	PCB Assembly (<i>see fig 3a</i>) Online design tool: Power Inductor Design
5	Semiconductor	III V	Online Simulation: Mosfet Switching Waveforms Measurement: Open loop waveforms
6	Control	VI	Ofline Simulation: Closed Loop, Control IC
7	Isolated Converters	VII	Measurement: Closed loop waveforms (see fig.3b)

Synchronized sequence of topics for lectures and lab assignments

Students actual progress during the seven week lab practicals (N=31)

What students learn from the lab simulations

Simulations (n=30)

Assembly skills

PCB assembly (n=26)

Measurement skills

Measurements (n=19)

- Combining topics theory and practice
- Improve the understanding per topic with specific practice
- Student should see clearly the link between theory and practice

Thank you! www.dc-lab.org

