Teaching and development project for an eMobility bachelor course.

THUAS Delft, The Netherlands
P.J. van Duijsen (presenter), D.C. Zuidervliet

www.dc-lab.org

April 29-30, 2023
Table of contents

1. System overview
2. Steering wheel
3. Communication protocol
4. Motor controller
5. Kart
6. Conclusions
Introduction

Task: Develop an electric kart for training eMobility to bachelor electrical engineering students

- Motor control
- System control
- Communication
System overview

Combining motor control with steering wheel controls

- Two Permanent Magnet Synchronous wheel hub motors
- Low Voltage inverters and Li-Ion Battery
- C2000 Sensorless Field Oriented Control
- Arduino-C2000 communication via SPI
Hardware to drive two or four wheel hub motors.
Steering Wheel

Steering wheel has all controls and communication with motor controller

- Acceleration and breaking pedals
- Communication via SPI with C2000 motor control
- 7-bit acceleration or breaking value
- bit-8 is for choosing acceleration or braking
- Every 5ms pedal values send to motor control
System Overview

- Steering wheel
 - LCD
 - Analog triggers

- Power supply
 - Battery
 - Fuse & Circuit breaker

- Motor controller
 - U4L
 - C2000
 - U4L

- Motor

Flow:
- 15V from Arduino to Motor
- 56V from Battery to Motor
Steering wheel with controls
Block diagram Arduino code
LCD control

Snelheid: ### km/h
Batterij: ### V
Advantage CAN communication

- Provide a very good price/performance ratio.
- Data transmission is very quick, up to 1Mb/s.
- The data is very reliable and has a very sophisticated and robust error detection.

Disadvantage CAN communication

- Network must be wired in topology that limits stubs (a length of transmission line that is connected at one end only) as much as possible.
- High cost for software development and maintenance.
- Possibility of signal integrity issues.
SPI Communication Protocol

Advantage SPI communication
- No start or stop bits, stream continuously
- Higher transfer rate compared to UART and I2C
- Dual communication way

Disadvantage SPI communication
- Only well structured data packages
- No direct communication between peripherals
- Separate CS lines to each peripheral
Block diagram SPI Communication

- **ARDUINO**
 - Read input values
 - Send brake & acceleration
 - Receive speed & SOC
 - $i+1$

- **C2000**
 - Setup & initialization
 - Send speed & SOC
 - Receive break & acceleration
 - Calculate break and acceleration

- Connections:
 - SCLK
 - MOSI (0 1 2 3 4 5 6 7)
 - MISO (7 6 5 4 3 2 1 0)
 - CS
Sensorless Field Oriented Control of Wheel-hub motors

- Motor controller using cascaded current speed regulation using PI controllers
- Sensorless Field Oriented Control, no need for position sensor
- Permanent magnet synchronous machine wheel-hub motors
Simple Caspoc simulation to demonstrate the PI controllers
Caspoc simulation of the Field Oriented Control
C2000 implementation of the Field Oriented Control
Test setup to control the motors
Kart with steering wheel and motor controllers
Conclusion

- Wheel-hub motors with sensorless FOC.
- SPI Communication between motor controller and pedals.
- Low voltage, being safe during bachelor laboratory assignment.

Thank you!

www.dc-lab.org