Distribution Of Renewable Energy In Light-Rail Traction Grids

Peter van Duijsen & Diëgo Zuidervliet The Hague University of Applied Sciences

www.dc-lab.org

www.caspoc.com

11 november 2022

International Symposium on Electronics and Telecommunications ISETC2022

APPLIED SCIENCES

Table of contents

- Introduction
- Oncept versus AC
- Concept DC system
- Inergy demand Light
- Solar Power Farm
- Solar power inner city
- Feeding overhead lines
- Oistribution
- Onclusions

Traditional? Use the AC grid

Traditional supply of the overhead lines from the public AC distribution grid. The Solar Farm feeds into the same public AC distribution grid.

www.dc-lab.org

www.caspoc.com

Distribution Of Renewable Energy In Light-Rail Traction

Idea? Why not use the traction grid?

Feeding into the traction overhead lines from a Solar Farm, together with the AC distribution grid.

Energy demand Light Rail traction? Accelerating, crousing and braking

Overhead line current

Current consumption during acceleration, cruising and braking.

Energy demand Light Rail traction? Accelerating, crousing and braking

Acceleration Cruising Braking

Normalized typical power consumption of Light-Rail Single working day

 \frown

Power consumption and measured normalized solar insolation Year.

Power consumption and measured normalized solar insolation Summertime.

Power consumption and measured normalized solar insolation Wintertime.

Solar insolation on Roof mounted solar panels Horizontal, 35, 65, $kWh/m2/day\!.$

Solar insolation on Facade mounted solar panels, kWh/m2/day.

Additional feeding of solar power from Roofs and Facades into the overhead lines.

Application of a single inductor Dual Active Bridge Bidirectional power flow control.

www.dc-lab.org

www.caspoc.com

Distribution Of Renewable Energy In Light-Rail Traction

Universal 6 Leg, to be configured as three parallel DAB bridges.

Conclusion:

Solar energy can be used for Light-Rail traction Traction overhead lines become a DC grid

- Partial contribution (miday)
- Traditionally via public AC grid
- Use traction overhead lines
- Feed solar energy directly into the overhead lines
- Distribution via traction overhead lines
- Bidirectional DCDC converter for distribution

Mulțumesc!