Virtual Electric Machines Laboratory, Requirements and Practical Realization THUAS Delft, The Netherlands Prof oP. dr.ir. P.J. van Duijsen(presenter), ing D.C. Zuidervliet

www.dc-lab.org

Mai 25th 2023

www.dc-lab.org

- Introduction:
- Virtual laboratory
- 8 Requirements
- Structure
- Objectives
- 6 Examples
- Orive simulations
- Conclusions

Virtual Laboratory Why do you need this?

- Cheaper
- More students at the same time
- Safe
- You prepare them for the real laboratory

Virtual Laboratory

what is it?

- Motivation Low entry-level access, freedom
- Challenges/Risks Cheaper/ will there be a real laboratory?
- Results

Experiments are safe, so you can do much more

Outcomes

Students get a deeper understanding of the operation of electric machines

Objectives

Physical laboratory set-up, of three phase inverter U4L with brushless DC motor and DC motor acting as tachometer.

Permanent Magnet DC motor driving a fan. Current is measured using an analog current meter, while a tachometer measures the speed of the rotor.

Requirements

- Connecting the components via wires with banana-plugs.
- Set parameters and/or choose the size/power rating of a component.
- Connect measuring devices like analog voltage or current meters, or digital multimeters.
- Start the experiment, instead of turning on the power supply, the simulation/animation has to be started.
- Observation of the results from the measuring devices.
- Change parameters(power/size rating) and observe their influence on the results.
- Validate the observation of the results.

Name plate parameters of the Permanent Magnet DC motor, including the number of rotor and stator poles for the animation of the motor.

• Conceive: Theory

A short introduction on the theory behind the experiment from the textbook. Here the basics of the functioning should be outlined, without going into detail on the operation.

• Design: Simulation

Simulation or animation, with simple model to explore working principle using simulation or online tooling. This will reveal the operation as explained in the theory.

• Implement: Set-up

Virtual laboratory set-up, with virtual components and animation. Select and place components and interconnect them.

• Operate: Validation

Run the experiment. Validation of the virtual laboratory results, with the theoretical and/or simulation results. Comparison with expectations, and explanation of the observed laboratory results.

DOrO Example Induction Machine

Simulation of the torque-speed characteristic of an induction machine driving a fan.

Doro Example Induction Machine

Measuring the winding resistance using a multimeter.

Application of a dynamometer to measure the slip of the induction machine for varying load.

Doro Example Universal Motor

Universal motor driving a fan, showing the typical torque harmonics.

Doro Example Drive system

Variable speed drive with quadratic load.

Doro Example Drive system

Variable speed drive, where the angular speed of the machine is set by a defined speed profile.

- Same Look and Feel
- Simple set-up, same as in real lab
- Only nameplate parameters
- Animation, so also inside details can be shown

Thank you! www.dc-lab.org

