Hierarchical Approach in Modeling and Simulation of Power Electronics for Education THUAS Delft, The Netherlands Prof oP. dr.ir. P.J. van Duijsen(presenter), ing D.C. Zuidervliet

www.dc-lab.org

Upro

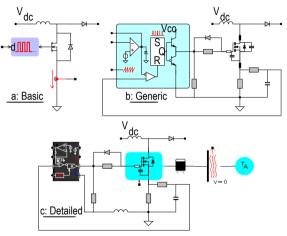
Mai 25th 2023

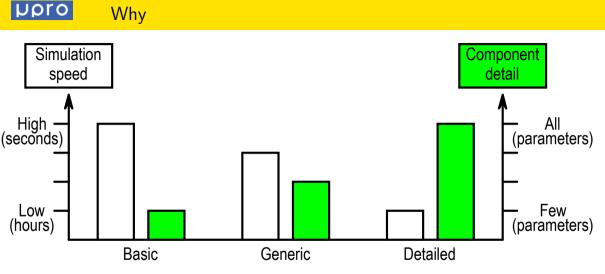
- Introduction:
- e Hierarchical Approach
- Why?
- Virtual Workbench
- Basic Model
- Generic Model
- Oetailed Model
- Conclusions

Types of models What to teach?

- Basic ideal model
- Generic functionality model
- Detailed component model

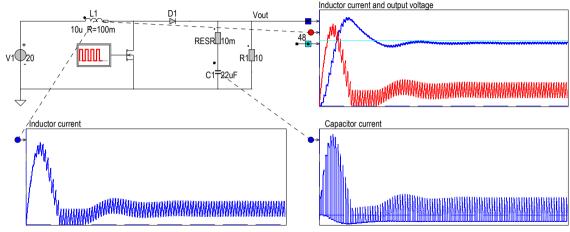
Tabel: Engineering questions and design issues dependency on the modeling approach


	open-loop	closed-loop	Power Loss	EMI
Basic	++	+	-	-
Generic	+	++	0	0
Detailed	+	0	++	+


TABLE II Simulation goals

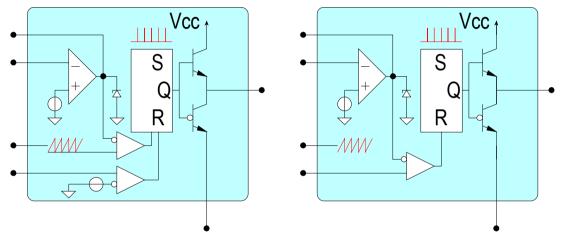
	Basic	Generic	Detailed
Control	Steady state Behavior,Start up,Stability	Control limits,Stability	Component non-linearity
Losses	Conduction,Inductor winding loss,Capacitor ESR loss	Conduction,Inductor winding loss,Capacitor ESR loss	 Conduction, Switching, Inductor winding loss, Core loss approximation, Capacitor ESR loss
EMI	Harmonics from the switch- ing waveforms	• Harmonics from the switch- ing waveforms and parasitic components	EMI from the parasitic com- ponents combined with dy- namics from semiconductors

DOLO Modeling approaches for SMPS

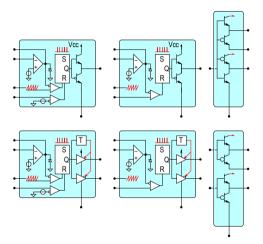


Modeling approaches for SMPS.

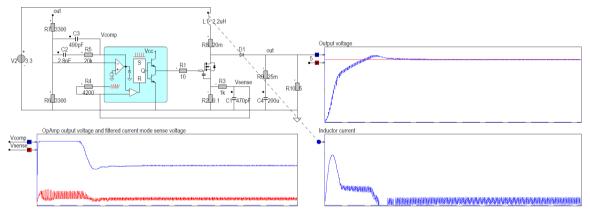
Simulation speed decreases, while component detail increases, when going from a Basic towards a Detailed model.

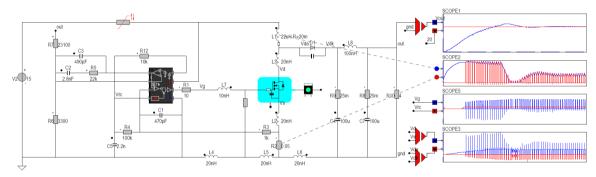


Basic model for the open-loop simulation.



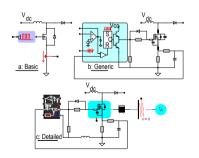
Generic model


Generic models for voltage mode(left) and current mode(right) controllers.


Generic models for voltage mode(left) and current mode(right) controllers.

Generic model for the peak-current-mode control and semiconductor in the simulation.

Upro Closed loop detailed



Detailed model for the peak-current-mode control IC and Mosfet in the simulation.

- Hierarchical Approach
- Only use and show these items that students need
- Basic/Generic/Detailed models
- Objectives: Depending on the students needs, provide the complexity of the model

Thank you! www.dc-lab.org

