Lifelong Learning in the Energy Transition: Implementation of Wireless Power Transfer THUAS Delft, The Netherlands P.J. van Duijsen, D.C. Zuidervliet, M. Mohammadali Mazlaghani

dc-lab.org

June 5 , 2025

Wireless Power Transfer

- Lifeling Learning
- Methods and readiness
- Oesign
- Simulation
- Measurement
- Onclusions

- Create awareness and understanding
- Show the applications
- Teach the principle and technology behind

• Society:

Adjust distance and alignment to show that it is possible to transfer power and the influence of correct placement of receiver and transmitter.

• Industry:

Measure input and output power as function of distance and alignment, to give insight in the possibilities of a typical application design.

• Education:

Measurement of voltage, current, in relation to L and C of the transmitter and receiver and distance, alignment, switching frequency and load.

UDIO Lifelong Learning

	Presentation	Example		
Society	Awareness	Toothbrush/Phone		
Industry	Applications	eVehicle Charging		
Education	Principle	Demo Kit		

	Design Tool	Simulation	Measurement
Society	-	-	Demonstration
Industry	Design	Verification	Proof of concept
Education	Mathematics	Understanding	Practical Laboratory

Wireless[50Hz] inductive charging of a battery in a toothbrush.

Doro Methods and Readiness

Wireless[100kHz] resonant charging of a smartphone

Standards in Wireless Power Transfer, (a)Qi, (b)Qi2, (c)Ki, (d)PMS, (e)AWP, (f)AirFuel.

Caspoc										33m -
	нопе 🚽	тоов 🚽 Нер 🗸						Logis +		27.5m -
18 2 1	Spiral coil	Call			2		Numerical Wavestorm Documentation			22m -
Power Electronics	a a a a a a a a a a a a a a a a a a a	Number of windings Outer diameter	đo	8 50		[.] [mm]	Col			16.5m -
 Drives Power Systems Traction 		Wre Shard diameter	di	21		(ran)	Inductance Resistance	L Brit	5.2 (µr) 56.7 (m0)	11m -
WPT		Number of strands	ns	105		[1]	Skin Depth	8	0.206 (mm)	5.5m -
Spiral Power Electroni	K 8	Back ferrite diameter Application	đf	55		(mn)	AC Insistance Quality factor	Q	67.8 [.]	0 -
- Nep		Frequency Coupling Factor	F5 812	100		[0H2] [.]	Maxmum Efficiency al x12+0.1	n	70.9 [%]	-5.5m -
							L=5.2(µH] Rdc=56.7(mD) 8=0.206(mm) Rac=56.8(mD) G	=67.6(.) n=70.9(%)		-11m -
				Calculate						-16.5m -
										-22m -
										-27.5m -
										-33m -

Design of the coils in design tool Caspoc

Maximum efficiency in relation to the primary and secondary current amplitude as function of resonant frequency in the design tool in Caspoc. Although the currents are not maximum at the resonant frequency, the efficiency is over 90% for the resonant frequency of 100.7kHz

The efficiency (η) for wireless power transfer in a series-series

$$\eta = \frac{R_s R_L}{R_s (R_L + R_s) + \frac{(R_L + R_s)^2}{k^2 Q_1 Q_2}}$$

- R_L is the load resistance
- R_s is the source resistance
- k is the coupling coefficient between the coils
- Q_1 and Q_2 are the quality factors $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$ of the transmitter and receiver coils, respectively

Simulation of the primary[Red] and secondary[Blue] voltage and currents in Caspoc

dc-	la	b.	or	g
-----	----	----	----	---

The topics included in the training cover the influence of:

- Distance and displacement
- Switching frequency
- Coupling factor k
- Load resistance

Upro Measurements

The WPT setup consists of two planar PCBs, which can be positioned at a specific distance from each other using spacers. By adjusting the spacer height, different coupling factors can be tested, allowing for controlled variations in the receiver coil's position.

Typical measurements are performed using an oscilloscope and include for example

- Primary and secondary voltages
- Primary and secondary currents
- Input and output power

The full hardware setup. On the left, the green U4L hardware trainer is connected to the blue WTP PCB. As a load, two 12V DC motors are mechanically coupled via their shafts. On the receiver side, a current of 350mA flows with a voltage of approximately 10V, both visible on the multimeters.

Upro Measurements

Typical measurement, where, from top to bottom the transmitter switching nodes(black and blue), the current trough the transmitter coil (pink) and the rectified receiver voltage(red).

Upro Conclusion

- Lifelong learning for three different groups
- Low level to detailed tehcnical level
- Design and Simulation Tools
- Practical measurements

Thank you! www.dc-power-lab.org P.J.vanDuijsen@hhs.nl

